|
公司基本資料信息
|
輻照交聯造粒機,輻照交聯電纜料造粒機(圖示)
聚乙烯的交聯可以采用輻照交聯、化學交聯和硅烷交聯三種方法。化學交聯電纜料的生產方法有一步法、兩步法二種。其中一步法是直接將交聯劑加入到PE粒子中,進行包裝,在放線時直接擠出電纜;兩步法是先制備均一的聚乙烯電纜料,然后由電纜廠擠出,生產交聯電纜。由于國內的電纜生產廠很多,因此一步法、兩步法電纜料的均有較好市場。
二、技術簡介 本公司在交聯聚乙烯電纜料己有10多年的生產歷史。提供的技術是本公司使用的成熟配方,能提供一步法、兩步法二種生產化學交聯接枝聚乙烯電纜料的生產技術,其中,兩步法生產的電纜料質量穩定可靠,大小粗細線均可使用;但設備投資大;一步法設備投資小,操作簡單,但產品質量沒有兩步穩定,一般用于生產大粗線上。一、概念
交聯電纜通常是指電纜的絕緣層采用交聯材料。*常用的材料為交聯聚乙烯(XLPE)。交聯工藝過程是將線性分子結構的聚乙烯(PE)材料通過特定的加工方式,使其形成體型網狀分線結構的交聯聚乙烯。使得長期允許工作混充由700C提高到900C(或更高),短路允許溫度由1400C提高到2500C(或更高),在保持其原有優良電氣性能的前提下,大大地提高了實際使用性能。目前電纜行業生產交聯電纜的工藝方式分為三類:**類 過氧化物化學交聯,包括飽合蒸氣交聯、惰性氣體交聯、熔鹽交聯、硅油交聯,國內均采用**種即干法化學交聯;惰性氣體交聯---――干法化學交聯采用加入過氧化合物交聯劑的聚乙烯絕緣材料,通過三層共擠完成導體屏蔽層――絕緣層――絕緣屏蔽層的擠出后,連續均勻地通過充滿高溫、高壓氮氣的密封交聯管完成交聯過程。傳熱媒體為氮氣(惰性氣體),交聯聚乙烯電氣性能優良、生產范圍可達500KV*。硅烷化學交聯――溫水交聯采用加入硅烷交聯劑的聚乙烯絕緣材料,通過1+2的擠出方式完成異體屏蔽層――絕緣層――絕緣屏蔽層的擠出后,將已冷卻裝盤的絕緣線芯浸入85-950C熱水中進行水解交聯,由于濕法交聯會影響絕緣層中的含水量。一般電壓等*僅達10KV。輻照交聯――物理交聯采用經過改性的聚乙烯絕緣料,通過1+2的擠出方式完成異體屏蔽層――絕緣層――絕緣屏蔽層的擠出后,將冷卻后的絕緣線芯,均勻通過高能電子加速器的輻照掃描窗口完成交聯過程。輻照交聯電纜料中不加入交聯劑,在交聯時是由高能電子加速器產生的高能電子束有效穿透絕緣層,通過能量轉換產生交聯反應的,因為電子帶有很高的能量,而且均勻地穿過絕緣層,所以形成的交聯鍵結合能量高,穩定性好。表現出的物理性能為,耐熱性能優于化學交聯電纜。但由于受加速器能量*的限制(一般不超過3.0Mev電子束有效穿透厚度為10mm以下,考慮幾何因數,生產電纜的電壓等*僅能達到10KV,優勢在6KV以下。
硅烷的用量直接影響交聯程度。采用工藝1
時, 凝膠質量分數一直隨硅烷的用量平緩增加, 但是
的交聯度也小于30 %; 而采用工藝2 時, 凝膠質量分數在硅烷的用量少于3 份時, 隨硅烷用量的增加而增加, 并在硅烷用量達到3 份時達到了點,之后略有下降。說明在采用工藝1 時, 硅烷未能有效的與EVA 進行接枝反應, 產生的部分凝膠只能是EVA 與硅烷發生了部分交聯反應或者是直接與過氧化物進行了交聯。采用工藝2 則反應完全, 并出現接枝飽和點, 低于此飽和點的用量將明顯的縮減交聯度, 而高于此飽和點的用量并不能增加交聯度, 多余的硅烷游離在EVA 中, 不但不能改善材料的性能,甚至可能形成弱應力點圖2 硅烷用量和凝膠質量分數的關系圖3 硅烷用量與拉伸強度和伸長率的關系圖3 為硅烷用量與拉伸強度和斷裂伸長率之間的關系。隨體系的交聯度的提高, 分子鏈之間的相對運動困難, 相當于提高了分子鏈的剛性, 使拉伸強度上升, 斷裂伸長率下降。215 引發劑的影響圖4 為引發劑用量與凝膠質量分數的關系, 如圖4 工藝2 中所示, 用量少, 得到的凝膠質量分數會明顯降低, 無法改善材料的交聯性能; 但用量過多, 凝膠質量分數也出現下降的趨勢。原因如下: 初始DCP的增加會增加接枝的質量分數, 提高了凝膠質量分數, 但當其達到某一極限時, 會產生由于接枝過度增加導致PE 大分子鏈上所含官能團數量急劇增長, 大分子鏈段運動受阻, 官能團之間發生碰撞交聯反應機會減少, 致使凝膠質量分數反而出現降低, 甚至DCP在用量較大時會奪取PE 的活性點直接參與反應, 形成早期的交聯鍵而使硅烷喪失交聯的機會和可能。